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ON THE STRUCTURE OF COMPLEX SOLVMANIFOLDS

KARL OELJEKLAUS & WOLFGANG RICHTHOFER

0. Introduction

A connected complex space X is called a solvmanifold if there is a connected
solvable complex Lie group G which acts holomorphically and transitively on
it. The goal of this paper is to understand two special classes of solvmanifolds
X:

(1) X ¢s Kdhler.

(2) X 45 locally separable by global hypersurfaces, i.e., given £ € X there
are complex analytic hypersurfaces F1,--- , F, smooth in x, such that ﬂ;;l F;
contains T as an isolated point.

Our main result is the following

Main Theorem. Let X be a complex solumanifold which satisfies (1)

or (2) and let X L, Y denote the holomorphic reduction of X. Then'Y is
a Stein manifold and F is a Cousin group. Moreover the first fundamental
group 71 (X) contains a nilpotent subgroup of finite indez.

A complex Lie group G is called a Cousin group if O(G)} = C. In this case
G is abelian and one has G = C"*/T, where I is a certain discrete subgroup
of C™ (see §1). The theorem is well known in the case where X is compact
(see [23], [7], [4]).

For X noncompact the theorem was partially known when X is a nilmani-
fold, i.e. when it admits a transitive holomorphic action of a nilpotent complex
Lie group. A result of [8] states that for any nilmanifold X the base of the

holomorphic reduction X L, ¥ is Stein and the fiber f has only constant
holomorphic functions. Moreover F is a principal abelian Lie group tower. In
[17] it is shown that F is already a Cousin group tower.

Using [8] and investigating the case of a nilmanifold X with O(X) = C, part
(2) of the theorem was independently proved in [1] and [18] for the nilpotent
case. ‘

If G is a nilpotent complex Lie group then it is easy to reduce function
theoretic considerations to the case of discrete isotropy, i.e., X = G/T, where
I' is a discrete subgroup of G. In this case there is a uniquely determined
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connected real subgroup Gy of G containing I' cocompactly. This is not true
in general for a solvable G/T.

The case where Gy exists and is a real form of G was considered in [13]. It
is shown that G/T' satisfies (1) if and only if it is Stein. For G/I' satisfying
(1) and Go/T a real hypersurface in G/T" the theorem was proved in [19].

The most recent result on solvmanifolds so far is given in [12]. It states
that for any solvmanifold X the base ¥ of the holomorphic reduction X Ly
is Stein. Moreover m;(Y) contains a nilpotent subgroup of finite index. In
particular the theorem is true when rank O(X) = dim¢ X (this condition
already implies (1) and (2)). _

The theorem yields striking results when the assumptions are more special.
We give two corollaries as examples.

Corollary 1 (Conjecture of Ahiezer, see §1). Let X be a solvmanifold
satisfying (2) and suppose O(X) = C. Then X is a Cousin group.

Corollary 2. Let X = G/I' be a solvmanifold. Suppose there exists a real
form Go of G containing T' cocompactly. Then x satisfies (2) if and only if it
18 Stein.

To illustrate Corollary 2 we give the following example which is due to J.
J. Loeb. For K = Z, R, C let Gx = K x K? be defined as follows: For
2,72 € K and b,b" € K2 let

(2,b) - (2,0) = (z+ 2', e b+ V),

where A =log(3 ).

Then Gg := Gr is a real form of G = G¢ which contains I' = Gz cocom-
pactly. Let X = G/T" and let X £, Y denote the holomorphic reduction of
X. J. J. Loeb proved that Y = G/G' - T=C* and F=G' - T/T = C* x C*.
As far as we know, this-is the first homogeneous counterexample to the Serre
question whether a holomorphic fiber bundle with Stein base and Stein fiber is
Stein. By Corollary 2 it follows that the hypersurface reduction of X (see §1)
has positive dimensional fibers. Since the fibration G/T' — G/G'T is the only
possible for G/T" (see [21]), the holomorphic and the hypersurface reduction
of X coincide!

The method we use to prove our theorem is a combination of the methods
in [11], [12], [13], [18] and [19].

We would like to thank D. Barlet who suggested we investigate the theory
of currents in case (2) and A. T. Huckleberry who motivated us to find the
final version of the Main Theorem.
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1. Preliminaries

Throughout this paper we are concerned with complex solvmanifolds, i.e.
with homogeneous spaces X = G/H, where G is a complex, solvable Lie group
and H a closed complex subgroup of G.

In this section we gather some basic definitions and known results about
the complex analytic structure of X = G/H.

An important differential geometric concept for our approach is given in

Definition 1. A complex manifold X is weakly Kéahler if there is a closed,
real, (1,1)-form w, which is positive semidefinite on X and positive definite
in at least one point z € X.

Note that by continuity a form given as in Definition 1 is positive definite
on some open set U C X.

It turns out that this condition is enough to obtain the conclusion of our
Main Theorem for a complex solvmanifold G/H.

A basic technique to approach the structure of the algebra of holomorphic
functions O(X) of X = G/H is the holomorphic reduction G/H = G/J
which is given by the following equivalence relation: two points z,y € X are
equivalent if and only if for every f € O(X) one has f(z) = f(y). This
equivalence relation is Autg (X)-equivariant and the stabilizer J C G of the
equivalence-class of 1 = H € G/H is a closed complez subgroup of G (see
[8, Theorem 1.1]). The base of the holomorphic reduction is holomorphically
separable and O(G/H) = »*0(G/J). Moreover G/J is characterized by the
universal property that every holomorphic map F from G/H into a holomor-
phically separable complex space factorizes through G/J. In general it is not
known which reasonable conditions force the fiber J/H of the holomorphic
reduction to have only constant holomorphic functions.

Definition 2. A complex abelian Lie group G with O(G) = C is called
a Cousin group.

It is clear that a Cousin group G is abelian and of the form C” /T, where
T is a discrete additive subgroup of C*. P. Cousin [5] was the first who
considered such groups.

The following theorem is due to B. Gilligan and A. T. Huckleberry [8].

Theorem 3. Let G be a nilpotent complex Lie group and H a closed
complex subgroup. Then there is a closed complex subgroup J C G containing
H, such that

(1) If #: G/H — G/J denotes the bundle projection, then O(G/H) =
7*0(G/J).

(2) G/J is Stein.

(3) The fiber J/H i3 connected.
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(4) O(J/H)=C.

(5) J/H is a principal abelian Lie group tower.

Remark. (a) In [18] it was shown that the fiber J/H in Theorem 3 is a
principal Cousin group tower.

(b) Recalling the example following Corollary 0.2 (Corollary 2 in §0) it
is clear that this theorem is false in the solvable case, since the fiber of the
holomorphic reduction may be a Stein manifold.

We give some facts which are known in the general solvable case. If G is
a (not necessarily closed) connected complex subgroup of GL,+1(C), then
every orbit of G in P, (C) is isomorphic to a product (C*)* x C! [22]. Note
that given X = G/H and N = Ng(H?) is the normalizer of the identity
component HC of H, then G/N is equivariantly embedded into some P,,(C).
We refer to G/H — G/N as the Tits fibration of G/H (see [11]). From the
remark above and the universality of the holomorphic reduction G/H — G/J
it follows that J C N.

Proposition 4. Let G be a ssmply connected solvable Lie group and H a
connected complex subgroup. Then G/H = C™.

Proof. This follows easily by Grauert’s Oka principle and induction on
dim¢ G/ H using (11, 1.2.5.8]. (Grauert’s Oka principle states that a holomor-
phic fiber bundle over a Stein manifold having a complez structure group s
holomorphically trivial if and only if it is topologically trivial [6].)

The most recent result about solvmanifolds G/H gives in particular a char-
acterization of the base G/J of the holomorphic reduction, which satisfies the
maximal rank condition. By definition, a complex n-dimensional manifold X
satisfies the maximal rank condition if there are f1,- -, f, € O(X) such that
dfi1 A--- Adf, 0.

Theorem 5. Let X = G/H be a complezx solvmanifold satisfying the maz-
imal rank condition. Then X is Stein. Moreover w1 (X) contains a nilpotent
subgroup of finite index (see [12]).

To analyze the structure of the set ¥{(X) of hypersurfaces in X = G/H
it is convenient to have a reduction analogous to the holomorphic reduction.
For this we define the following equivalence relation: Two points z,y € X are
equivalent if and only if for every H € ¥(X) with z € H it follows y € H
and vice versa. This equivalence relation yields a holomorphic equivariant
fibration

p: X=G/H-G/I=Y

such that ¥(X) = 7*¥(Y). Moreover Y is separable by hypersurfaces, i.e.
given z,y € Y, z # y, there exists an H € ¥(Y) such that z € H, y ¢ H.
(For details see {18, Kap. I].) A manifold Y is said to be locally separable
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by hypersurfaces if for every point y € Y there are hypersurfaces Fi,--- , Fy
such that with y € F;, ¢ = 1,--- ,k and ﬂle F; contains y as an isolated
point. For a homogeneous manifold X = G/H this condition implies that
X is weakly Kahler if H? «G. As in the case of holomorphic functions it is
reasonable to ask for a description of ¥(X) in terms of G and H. The first
result in this direction is due to Grauert and Remmert [18].

Theorem 6. Let X be a compact complex homogeneous manifold. Then
the hypersurface reduction p: X — Y 13 a holomorphic fiber bundle over a
projective algebraic manifold Y with connected complex parallelizable fiber.

Note that a homogeneous projective algebraic manifold ¥ = G/I is a prod-
uct G/P x T, where G/P is projective rational and T is an abelian variety.
The fibration G/I — G/P is just the Tits fibration of Y and P is the minimal
parabolic subgroup of G containing I [4]. This result motivates the following
general conjecture which is due to Ahiezer (see (1]):

Conjecture. Let G be a complex Lie group and H C G an arbitrary
subgroup such that

(1) 0(G)Y? = C, i.e., every right H-invariant holomorphic function on G
18 constant.

(2) H s not contained in a proper parabolic subgroup of G.

Then ¥(G)H = X(G)GH, ie., every hypersurface F € ¥(G) invariant
under the right action of H (F - h = F, h € H) is invariant under the right
action of the commutator group G' of G.

If G is solvable then condition (2) is redundant, since a complex solvable
Lie group does not contain a proper parabolic subgroup.

This conjecture has been proved in several special cases. The case where
H is complex and cocompact in G was described above. In this case it follows
P =G and Y is an algebraic torus, i.e. G’ C I. If G is semisimple, then H
is Zariski dense and the conjecture follows from the theorem of Huckleberry
and Margulis [10].

The nilpotent case was handled in [i] and [18]. One of the main results of
this paper is the proof of the conjecture for solvable G.

2. CR-solvmanifolds

To understand complex solvmanifolds, it is reasonable to study first those
which inherit an additional structure and then to reduce the general situation
to this case. In this section we study solvmanifolds G/T", which have a discrete
isotropy and contain a compact generic CR-orbit of a subgroup Gg. To be
precise we consider triples (T', Go, G) consisting of a simply connected, solvable,
complex Lie group G, a (not necessarily complex) generic Lie group Go of G
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and a discrete subgroup I' C Gy, which s cocompact in Gy. Here a Lie
subgroup Gy C G is called generic if the Lie algebra gy of Gy generates the
Lie algebra g as a vector space over C, i.e.,

g = go + 1go-

The intersection m := gp Nigy is a complex ideal in g. A triple (', Go,G) as
above is called a CR-solvmanifold (CRS).

If (T,Go,G) is a CRS and G/T is weakly Kahlerian, we call (T, Go,G)
a weakly Kéhlerian CR-solvmanifold (KCRS). Note that we may assume
that the open set, where a given closed real positive semidefinite (1,1) form
w is positive definite, intersects the compact Go orbit Go/T'. Identify w with
its right-I" invariant pullback to G. Since Go/I" is compact it carries a left
Go-invariant, finite, normalized measure u.

Define @ on G as

Wp (Vp, W) :=/ Wp-g(drgVp, drawy) du(g),
Go/T

where p € G, vp, wp € TG and the right-T" invariant function Go — R, g
wWp.g(drgvp, drgwp) is considered as a function on Go/I'. Let 7: G — G /Gy
denote the quotient map given by Gy. Furthermore let V = #x(U), where U is
an open right-T" invariant subset of G such that w|U is positive definite and
UNGo #@. Since 7 is an open map V is open in G/Gg and U =« 1(U) is
open and right-Gg invariant in G. Let p € U and let J denote the complex
structure tensor on G. Then for v € T,G we have

& (vp, Jvp) = / Wp.g(dryvy, Jdrgvy) du(g) > 0,
Go/T

since w]U~' >0and UNU # &. Moreover, @ is a closed real positive semi-
definite (1,1) form which is right-Gp invariant. These considerations show
that (I', Go,G) is KCRS if and only if there is a closed real positive semi-
definite right-Gyp invariant (1,1) form w on G and a Gp-right invariant open
neighborhood of Gg in G, where w is positive definite.

In the following we always assume a KCRS to be given in such a way.

For the statement of the main result of this section it is necessary to intro-
duce some further notation.

Definition 1. A real Lie algebra g has an imaginary spectrum if every
v € ad(g) considered as an endomorphism of g has only imaginary eigenvalues
{note that zero is also an imaginary number).

The main result of this section is

Theorem 2. Let (I',Go,G) be a KCRS. Then gy has an imaginary
spectrum.
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It is essential for the proof of Theorem 2 to characterize those real Lie al-
gebras which do not have an imaginary spectrum and to describe the function
theoretic properties of those CRS’s in which they appear. At first we give
two examples of such Lie algebras:

Examples 3. (i) Let Ar denote the group of affine transformations of
the real line. Then clearly the Lie algebra a of Ag does not have an imaginary
spectrum.

(ii) For p € R\ {0} let G,, denote the Lie group defined as follows. Take
R x R? and define a multiplication on it by

(2,b)(,6) = (z+ 2,4 b+ V),

where 2,2’ €R, b,)' € R? and A, := (_1“ #). Then the Lie algebra g, of G,
does not have an imaginary spectrum. q.e.d.

The following theorems are due to J. J. Loeb (see [13]).

Theorem 4. Let G be a simply connected real Lie group. Then the Lie
algebra g of G does not admit an imaginary spectrum if and only if G contains
a subgroup of the form Agr or G,.

Theorem 5. Let Ac (resp. GS) denote the complezification of Ar (resp.
Gp) and let U denote a right-Ar (resp. G,) invariant open neighborhood
of Ar (resp. G,) in Ac (resp. fo) Then there does not exist any positive
closed (1,1) formw on Ac (resp. GS) which is right-Ag (resp. G,.) invariant
and strictly positive on U.

This statement is not explicit in [13], but it follows from [13] by proof of
Theorem 5, Proposition 3 together with its corollary (in the case Ar, Ac)
and Proposition 4 together with the Remark (case G, GS).

The last ingredient we need for the proof of Theorem 2 is

Proposition 6. Let G be a compler Lie group. Suppose that G admits a
Kdhler metric which is tnvariant with respect to the right (or left) multiplica-
tion of G. Then G is abelian.

Proof. Let h denote such a Kaéhler metric on G. Assume that it is right-G
invariant. Consider the right invariant vector fields on G and identify them
with the Lie algebra g of G. The Kahler form w associated to h is given by
w(X,Y) = h(X,JY) where J denotes the complex structure tensor on G.
Since w is closed and right invariant we have

(%) 0=w(X,[Y,Z]) +w(Z,[X,Y]) +w(Y,[Z,X])

forall X,Y,Z € g.
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Assume there is a nonabelian, two-dimensional, complex subalgebra a C g.
Then there is a basis (X,Y) of a satisfying [X,Y] =Y. By (x) we have

0= w(X,[Y,JY]) + w(JY, [X,Y]) + w(Y,[JY, X])
= 2(JY,Y) = 2h(JY, JY) >0,

which is a contradiction. Thus every two-dimensional complex subalgebra of
g is abelian. Let B denote a maximal solvable subalgebra of g. We claim that
B is nilpotent. To see this assume the contrary. Then there is a k¥ € N such
that [B, B%)] = B¥), where B(¥) denotes the descending central series of B.
Lie’s flag theorem applied to the adjoint representation of B in End(B(*))
yields the existence of a nonabelian two-dimensional complex subalgebra of
B. This contradiction proves our claim, and B being nilpotent implies that g
is nilpotent.

Now g being nilpotent, it has a nontrivial center C, which nontrivially
intersects every nonzero ideal of g, in particular the commutator algebra g’ if
it is nontrivial. Let 0 # X € CNyg'. Then by (*) we have

0=w(X,lY, Z])

forallY,Z € g. Thusw(X,X') =0forall X’ € g'. Since w|g' is nondegenerate,
this shows that g’ = 0 and G is abelian.

Corollary 7. Let (I',Go,G) be a KCRS. Then go Nigy = m is abelian.

Proof. Let G, = (expm) denote the Lie subgroup of Gy generated by m.
Take a Gy-right invariant neighborhood U of Gg in G and a closed positive
Go-right invariant (1,1) form w which is strictly positive definite on U. Then
w|Gm, is right Gy, invariant. Since G,, is a complex Lie group, the corollary
now follows from Proposition 6. q.e.d.

We now come to the

Proof of Theorem 2. Assume that go does not have an imaginary spec-
trum. Then Gg contains a subgroup of the form Agr or G,. At first assume
it contains Ar. Let A denote the complexification of Ag in G, ie., A =
(exp(a + 2a)), where the sum is not necessarily direct. By a dimension argu-
ment and by Proposition 6 it follows that Ar is a real form of A (otherwise
Agr would be abelian). This however contradicts Theorem 5.

Now take G, C Gy and its complexification GE in G. Again by Theorem 5
G, cannot be a real form of G§. Thus Gy has to be a two-dimensional
complex subgroup of G. Since a complex two-dimensional nonabelian Lie
subalgebra contains exactly one nonzero ideal, namely its commutator algebra
and since g, N7g, # 0 in this case, it follows that

(85) = gu Nigy.
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Also since g$ is two dimensional, every eigenvector in g$ belonging to a
nonzero eigenvalue of an element ad X, X € gff, has to be contained in (gff)’ .
Take X € g, and let A € C be a nonzero eigenvalue of ad X. Then there is a
Y € (g5) such that [X,Y]=A-Y.

Let A =a+18, a,8 € R. We have

0 =w(X,[Y,?Y]) + w(?Y, [X,Y]) + w(Y, [¢Y, X]),

because Y € g, Nig, C go.
Hence it follows that

0 =2w(?Y,[X,Y]) = 2w(tY,aY +18Y) = 20w(iY,Y).

Since w(7Y,Y) > 0 it follows that o« = 0. Hence ad X has only imaginary
eigenvalues, which contradicts the fact that g, has a nonimaginary spectrum.
Therefore by Theorem 4 it follows that gy has an imaginary spectrum.

Remark 8. Theorem 2 was proved by Loeb in the case where Gg is a
real form of G. In this case one has the equivalence: G/T" is Kédhler if and
only if go has an imaginary spectrum (see [13]).

For later use we need the following:

Lemma 9. Let (T',Go,G) be a CRS and let H be a closed complez sub-
group of G containing I'. Let Hy := HNGy. Then Go/Hy is totally real in
G/H if and only if the following conditions are satisfied:

(i) bo +tho =b.
(ii) m Cb.

Proof. The Gy-orbit of p = H in G/H is totally real if and only if 0 =
myp = Tp(Go/Ho)NiT(Go/Ho). Since Ty (Go/Ho)+iTp(Go/ Ho) = Tp(G/H),
we have

dimg m, = 2dimg T,(Go/Ho) — dimg T,,(G/H)
= dln’lR g0 — 2 dlmR bo - dln’lR g+ dln’lR b

On the other hand dimg m = 2dimg go — dimg g, since Gg is a generic
subgroup of G. Thus we obtain

dimg m, = dimg m — 2dimg ho + dimg b
and dimg m, = 0 if and only if
0 = dimg m — 2dimg ho + dimg b.

Note that dimg (ho +2ho) = 2 dimg ho —dimg (hN<hy), i.e. mp = 0 if and only
if

0 = dimg m — dimg (ho + ihg) — dimR(bO Niho) + dimg b.
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Since hg + 7hg C b and by N ihg C m the last equation holds if and only if

(i) bo+72ho =b;
(ii) hoNthg = m.

Remark 10. Let (T',Gy,G) be a CRS and H, Hy be given as in Lemma
2.7. If moreover hg is an ideal in go, then (Ho/HY,Go/HQ,G/H®) is a CRS
and Go/HY is a real form of G/H®, where HS denotes the identity component
of Ho.

3. Nilmanifolds

In this section we consider weakly Kéhlerian nilmanifolds. A nilmanifold
X is a quotient space X = G/H, where G is a nilpotent complex Lie group
and H C G a closed complex subgroup. (Of course we may assume that G is
simply connected). Let m: G/H — G/J denote the holomorphic reduction of
G/H. Then O(J/H) = C, G/J is Stein and J/H is connected (see Theorem
1.3). If G/H is weakly Kihler then clearly the same is true for J/H.

Our aim is to proof

Theorem 1. Let X be a weakly Kdhlerian nilmanifold and let X Ey
denote the holomorphic reduction of X. Then'Y is Stein and F is a Cousin
group.

Note that O(J/H) = C implies that H® « JO. If G is simply connected
then the same is true for J°/H? and we have J/H = G/T', where G = JO/HP°
and T = J° N H. Thus Theorem 1 immediately follows from

Theorem 2. Let G be a simply connected complex nilpotent Lie group
and I' C G a discrete subgroup such that

(1) 0(G/T) = C and

(2) G/T is weakly Kdhlerian.

Then G is abelian.

Indeed the assumption in Theorem 2 describes a special KCRS. For this
we quote Theorem 3 [15]: Let G be a simply connected nilpotent Lie group
and H C G a closed subgroup. Then there exists a unique connected closed
subgroup Go C G containing H, such that

(1) Go/H +ts compact;

(2) G/GO = Rn’.

(3) The bundle G/H — G/Gq is real analytically trivial.

Note that having such a Gy in the situation of Theorem 2 implies that
G§ = {expgo + igo) is a closed complex subgroup of G containing I'. Thus
G/G§ = C¥ (1.4) and the condition O(G/T) = C forces G§ = G, i.e., Go
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is a generic subgroup of G. Thus we have to prove an equivalent version of
Theorem 2.

Theorem 2. Let (T,Gy,G) be a KCRS. Suppose G is nilpotent and
O(G/T) = C. Then G 1s abelian.

Proof. Let w denote a right-G¢ invariant closed real positive (1,1) form
on G, which is strictly positive on a right-Gy invariant open neighborhood U
of Go in G. For p € G and v,, w, € T,G define

h(vp, wp) = w(Jvp, wp),
where here J denotes the complex structure tensor on G. Then A|U is a
right-Gg invariant Kahler metric on U.

Since Gy is a generic subgroup of G, the center Cy of gy is given by Cp =
C N go, where C denotes the center of g.

At first we show that
(%) Cnm={X e€m: w(X,|[g,m]) =0}.

For this let

a={X €go: w(X,m)=0}.
Then a is a real subalgebra of gy and we have gg = a X m. To see this
consider h and let (v1, - ,vag, w1, -+ ,w;) be an orthonormal basis of go,
where (v1,- - ,vgk) is an orthonormal basis of m, such that v;4x = Jv; for
J< k.

Using the relation between w and h, it is easy to see that a is just the real
span of (wq, -+ ,w;). Thus go = a ® m as a vector space. The fact that a is
an algebra follows from the formula
(%x) 0=w(X,[Y,Z]) +w(Z, [X,Y]) + w(Y,[Z,X])
for all X,Y,Z € gp, using the fact that m is an ideal in go. (Note that
[8,m] = [go, m]. Thus, using Corollary 2.7, which says that m is abelian, we
have [g,m] = [a,m].

By (*x) it follows that

CNmc{Xem: w(lX/gm])= 0}.
To verify the opposite inclusion it is enough to show that for Xy € {X €

m: w(X,m) = 0} one has [Xp,a] = 0. For this let Y € a and Z € m. Then
by (**) we have

0 = w(Xo,[Y, Z]) + w(Z,(Xo, X]) + w(Y, [Z, Xo]).
Since (Y, Z] € [g,m] and (Z, Xo| € m, it follows that
w(Z,[Xo0,Y]) =0
foral Zem,Y €a.
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But X, € m implies that [Xo,Y] € m. Since m is a complex subspace of g,
we know that w|m is nondegenerate. Therefore we have [Xo,Y] = 0 and (%)
is proved.

Since g is nilpotent, we have C' # 0 and C nontrivially intersects every
nonzero ideal of g. Thus [g,m] being an ideal in g implies {g,m] = 0 (see (*))
or equivalently that m C C.

We now claim that

C = Cy +1Cy.
For this note that gy = o’ + [a, m]. Since [a, m] = 0, it follows that g Nig) =
adniNmcanm=0.

Take C > Z =X +1Y, X,Y € go. Then for an arbitrary X’ € gg we have

0=[2,X]=[X X]+iY, X,

which shows that [X,X'],[Y,Y’] € g; Nigy = 0. Thus X,Y € Cp, which
proves our claim.

Note that O(G/T') = C implies that the orbits of the center Z of G are
closed in G/T [2]. Thus we may consider the fibrations:

Go/r e G/P

| !

Since m C C, and Cy +1Cy = C, it follows from Lemma 2.9 that Go/Zg is
a real form of G/Z. Thus G/ZT is Stein [8, p. 47) and O(G/T) = C forces
G =Z,i.e., (G is abelian.

Remarks 4. (a)! It should be noted that the proof of Theorem 2’ yields
an exact description of Kahlerian nilmanifolds.

Let G/H be a complex nilmanifold. Then there exists a uniquely deter-
mined nilpotent complex Lie group N, such that G/H = C™ x N/T, where
I' is a “maximal” discrete subgroup of N. (Here “maximal” means that T is
not contained in a proper connected complex subgroup of N) (see [14]). Thus
G/H is Kéhler if and only if N/T is Kahler. Now let ¥y denote the smallest
connected real subgroup of N containing I' (see Theorem 3). By the proof of
Theorem 2 it follows that the Kéihler assumption on G/H yields a splitting

ng =a®m, where m is abelian and aN<a = 0.

Conversely assume that there is such a splitting of ng. Let a€ = a+4a and A
(resp. A€) = (expa) (resp. (expa€)). Then we have

No=AxG,, and N = A€ x G,,..

1We thank J. J. Loeb for contributing to remark (a).



ON THE STRUCTURE OF COMPLEX SOLVMANIFOLDS 411

Moreover there exists a right A-invariant Kihler form on A€ (see [13]). Since
G is abelian this yields a right Ng-invariant Kihler form on N and hence a
Kaéhler form on N/T.

(b) For practical use it is convenient to note that the Kéhler assumption
on N/I' implies that ny Nm = 0.

(¢) Remark (a) shows that a nilmanifold is weakly K#hlerian if and only if
it is Kahlerian.

(d) The formula (*) in the proof of Theorem 2’ is valid for every KCRS
(T', Gy, G). One can say a little bit more about the splitting go = ax m in the
case where G is not nilpotent.

Let n (resp n,) denote the nilradical of go (resp. a). Then n = ny X m.
The arguments in the proof of Theorem 2 show that n = n, & m. Hence the
adjoined action of gg on m factorizes through go/n = a/ng. It is easy to see
that the eigenvalues of an element ¢ € a are purely imaginary and (%) implies
that go = a® m if and only if there is some X € m, such that [a, X] = 0.

4. The holomorphic reduction of Kihlerian solvmanifolds

In this section we prove

Theorem 1. Let G/H be a weakly Kihlerian solvmanifold. Then the
holomorphic reduction G/H — G/J realizes G/H as a Cousin group bundle
over a Stein manifold. Moreover 71 (G/H) contains a subgroup of finite index
which is nilpotent.

'The proof of Theorem 1 uses results and methods of [12], which essentially
reduce the general situation to that of a KCRS. At first we recall some basic
notions, which are essential for this reduction.

An element g of a complex Lie group G is called regular if the Zariski closure
of Zy := {Adg": n € Z} in GL¢(g) contains a maximal torus of the Zariski
closure of Ad(G). (For details about this notion we refer to [17].)

Let G be a simply connected solvable complex Lie group. Then there exists
a solvable linear algebraic complex Lie group

G, = (C)xaG

containing GG as a Zariski dense and topologically closed normal subgroup
(see [9, Theorem 3.1]). The group G, is called a regular algebraic huil of G.
The commutator subgroups of G, and G coincide (see [3]). For every closed
complex subgroup H C G the complex manifolds G,/H and (C*)* x G/H
are biholomorphically equivalent. In particular G,/H is weakly Kihler if and
only if G/H is weakly Kdhler. If G,/H — G,/J denotes the holomorphic
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reduction, then J C G and G,/J = (C*)¥ x G/J. 1t is also clear that
m1(G/H) is nilpotent if and only if 71(G1/H) is nilpotent.

A basic step for the proof of Theorem 1 is

Lemma 2. Let G/T be a weakly Kihlerian solumanifold. Assume G s
simply connected and T is a discrete subgroup of G, which contains a regular
element. Then T' contains a nilpotent subgroup r of finite indez.

This lemma is essentially due to A. Huckleberry and E. Oeljeklaus. In [12] it
is proved for the special case, where rank O0(G/T") = dimg G/T. However the
proof basicly uses the fact that for a CRS (T, Gg,G), where G/T satisfies the
maximal rank condition, the Lie algebra gg has purely imaginary spectrum
[13]. Since more general (T, Gg,G) being a KCRS implies that gy has an
imaginary spectrum (see Theorem 2.2), the proof of [12] carries over to the
situation of Lemma 2.

Lemma 3. Let G/T be a weakly Kéihlerian solvmanifold. Suppose G is
an algebraic group and T is a discrete Zariski dense subgroup of G. Then G
is nilpotent.

This lemma is also proved in [12] for the case where rank O(G/T') =
dime G/T'. However the proof only uses Lemma 2 and the fact that a Zariski
dense subgroup of a connected complex algebraic group contains a regular
element.

We now come to the

Proof of Theorem 1. At first we may assume that G is simply connected.
Note also that taking a complex subgroup H C H of finite index instead of H
does not have any effect on the statement of the theorem. Let G, = (C*)*x G
denote a regular algebraic hull of G. For any subgroup L C G, let G,(L)
denote the Zariski closure of L in G,. The group Hy := (G,(H))’ N H has a
finite index in H. Thus by the remark above we may assume that Hy = H
and G,(H) is connected.

Let us now consider the case where H is a discrete subgroup of G. 1t is clear
that Go(H)/H is weakly Kahler. Thus by Lemma 3 it follows that G,(H)
is nilpotent. Let Go(H)/H — G,(H)/J denote the holomorphic reduction
of the G,(H) orbit of H in G,/H. Then by Theorem 3.1 we know that
Go(H)/J is Stein and J/H is a Cousin group. Since quotients of solvable,
algebraic groups are Stein and G,(H) is an algebraic subgroup of G, we also
know that G,/G,(H) is Stein (see [11], [22]). Thus we have the holomorphic
fibrations

Go/H — Gu/J = Ga/Ga(H).

A basic theorem of Matsushima and Morimoto [16] says the following: Let
E — B be a holomorphic fiber bundle with fiber F' and a complezx Lie group S
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a structure group. Assume that S/S° is finite and F and B are Stein. Then
E is Stein.

The application of this theorem to the bundle G,/J — G,/G.(H) shows
that G,/J is Stein. Thus Go/H — G,/J is the holomorphic reduction. By
the remark previous to Lemma 2 we have that J C G, thus G/J is Stein,
J/H is a Cousin group and H is nilpotent (H C Go(H)!).

If H is not discrete in G let N = Ng_ (H?). This is an algebraic subgroup
of G, (see [12]) and H/HPC is a discrete subgroup of N/H°. Since also N°
is algebraic and H C G,(H) which is already assumed to be connected, it
follows that H C NO. Thus, by the above, we know that the holomorphic
reduction N°/H — N°/J has a Stein base and a Cousin group as fiber. Since
G4/NOY is Stein it follows (again by the theorem of Matsushima-Morimoto)
that G,/J is Stein and G,/H — G,/J is the holomorphic reduction. Thus
again J C G, G/J is Stein and G/H — G/J is the holomorphic reduction
of G/H. Moreover, by the above we have that H/H° contains a nilpotent
subgroup H of finite index. Thus m(G/H) = H/H° (note that G Zpine C?)
contains a nilpotent subgroup of finite index and the theorem is proved.

Corollary 4 [12]. Let G be a solvable complez Lie group and H C G a
closed complex subgroup. Then G/H satisfies the mazimal rank condition if
and only if it is Stein. In this case n1(G/H) admits a nilpotent subgroup of
finite index.

Corollary 5. Let G be a solvable complez Lie group and H C G a closed
complez subgroup such that G/H is weakly Kihler and O(G/H) = C. Then
G' C H and G/H 4s a Cousin group.

Finishing this section we give two examples of nilmanifolds realized as
Cousin group bundles over Stein manifolds. The first is Kéhler and the second
is not. These examples show that the converse of Theorem 1 is not true in
general and furthermore that the bundle given by Theorem 1 may be not
holomorphically trivial.

Examples 6. (a) Consider the group of matrices

SO =

Gk = cz,y,z,wE€ K p, where K=C,R,Z.

O =@ N
—_ o O 8

z
1
0
0

o

It is clear that Ggr is a real form of G¢. Since Gr is nilpotent, it has an
imaginary spectrum. Therefore G¢ admits a right-Gg invariant Kahler form
w (see [13]). In view of the product structure of G we may assume that w
restricted to the w-direction is the standard Kahler form dw A dw. Take the-
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discrete subgroup I' of G generated by Gz and the element

1 0 v2 iv3
01 0 0
o0 1 o |€C%c
00 0 1

Then w is right I'-invariant, i.e., Gc/T is a Kahler manifold. Let

C= 2, weC CGg,

O = O
— o o 8

1 0
01
00
00
i.e.,, C is the center of Gc. The base of the fibration Gg/T' — G¢/C - T
is C* x C* and the fiber is isomorphic to the Cousin group C2/f‘; I =

(((1)), 9, (,‘\//_r‘;—))z C C2. Since I is not abelian this bundle cannot be (even

topologically) trivial.
(b) For this example let

1 =z
G= 1

be the complex three-dimensional Heisenberg group. Consider the discret

subgroup
1 m k+1l
I‘={(O 1 m ):n,m,k,lEZ}
0 0 1

1 0 =
C = 01 0], 2e€C;,
0 01

i.e., the center and commutator group of G. The fibration G/T — G/C-T
realizes G/T as a torus bundle over C* x C*.
The subgroup

1 z =
Gp := 01 ygyl:z,yeR,2€C; CG
0 01
(

contains I" cocompact. Thus T, Gp, G) is nilpotent CRS. Since m := go N
190 = gg + £8g, we have gj N'm # (0). Hence it follows by Remark 3.4 that
G/T is not Kéahler.

1 z,y,2€ C

Ll S

and let
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5. Hypersurfaces in solvmanifolds

Let X = G/H be a solvmanifold and let
. X=G/H-G/I=2

denote the hypersurface reduction (see §1). Then Z is separable by hy-
persurfaces and every hypersurface in X is the preimage of one in Z, i.e.,
X¥(X) = n*¥(Z). Thus in order to describe ¥ (X) it is sufficient to under-
stand the manifold Z.

It turns out that a complex solvmanifold X, which is locally separable
by global hypersurfaces (see §1), inherits the same structure as a Kihlerian
solvmanifold.

Theorem 1. Let X = G/H be a complex solvmanifold, which is locally
separable by global hypersurfaces. Then the holomorphic reduction X Ly
has a Stein base Y and the fiber F is a Cousin group. Moreover w1(X) contains
a nilpotent subgroup of finite index.

The basic ingredient for the proof of Theorem 1 is

Theorem 2. Let G be an (arbitrary) complex Lie group and T C G a
discrete subgroup. If X = G/T is locally separable by global hypersurfaces,
then X admits an ezhaustion (Upy)men and a sequence (wm)men of real
closed positive semidefinite (1,1) forms, such that w,,|Up, is positive definite.
If X is separable by meromorphic functions, then X is Kdhler.

Corollary 3. Let X = G/T be given as in Theorem 2. Then X is weakly
Kdhlerian.

Before we prove Theorem 2, we show how it implies Theorem 1.

Proof of Theorem 1. The proof is almost exactly the same as that of
Theorem 4.1. If H is discrete in G then Theorem 1 immediately follows from
Corollary 3 and 4.1. If H is not discrete, let G, denote a regular algebraic
hull of G (see §4). Then G,/H is also locally separable by global hypersur-
faces. Let N = Ng, (H°). This is an algebraic subgroup of G, (see [12]) and
H/HO is a discrete subgroup of N/H°. Since N is also algebraic and since
we may assume H C G,(H) (see the proof of 4.1), we also may assume that
H C Np. Thus by 4.1 and Corollary 3 we know that the holomorphic reduction
NO/H — N®/J has a Stein base and a Cousin group as fiber. Since G,/N°
is Stein, it follows that G,/J is Stein and G,/H — G,/J is the holomorphic
reduction. Thus we have J C G, G/J is Stein and G/H — G/J is the holo-
morphic reduction. Moreover by 4.1 we have that H/H° contains a nilpotent
subgroup of finite index. Thus the same is true for 7;(G/H) = H/H° (for
details see §4; in particular the proof of 4.1). q.e.d.
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We now come to the

Proof of Theorem 2. At first we proof the part of the theorem where X is
assumed to be locally separable by global hypersurfaces.

Let p =T € G/T. By assumption it is possible to construct a hypersurface
H such that every irreducible component H; of H is smooth in p and N}, H;
contains p as an isolated point (n = dimc X). Let Ty be the closed, positive
(1,1) current defined by H, i.e.,

Tale)i= [ o pearioTi(r),
H‘

where H* is the set of smooth points of H and A??(X) the space of comipactly
supported (p, ¢)-forms on X. o

. AN
Claim. For every n € A7~1:0(X) such that p € supp(n) we have

n—1
(%) (=)= D=2y (n ATf) > 0.

Proof of the Claim.  Take a coordinate patch (U,z = (z1,---,2,)) cen-
tered at p such that H; N U = {z = 0}. We may assume that suppn C U.
Letn=73_,nkdz1 A--- A d2x A--- A dz,, where (without loss of generality)
71(p) # 0. (The notation dzy A+ - <A dZx A+ - - A dz, means that dz is omitted.)

Then we have

n
AT =Y meledzi A Ads A Aden AdZLA <A dZe A A dZn + R,
k=1
where R denotes the sum over the mixed components of 7 A 7. For such a
component g = Nef dza A-- A dégA-- ANdzpg AdZL A+ A dZiA - A dZn,
k # 1, it is clear that

/ =0 forallm=1,.--- n.
Hm={zm=0}

Hence Ty (n A7) reduces to

n

Z/ elPdzi A AdBk A Adzg AdZL A A dZk A<~ A dZp
k=1 Hk={zk=0}

and thus 71{p) # 0 implies the claim.

Since T is a discrete subgroup of G, i.e. the 7: G — G/T is a covering,
we may consider Ty as a right T invariant closed, real, positive (1,1) current
on G, which is strictly positive on forms n A7, n € AP0 {G) such that
supp(n) NT # &, i.e., for those  we have

) (%)n- (-1 DD Ty (g AT > 0.
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Now let (p1,- - , itn) denote a basis of the right invariant holomorphic 1-forms
on G. Then (¢/2)"us ATy A+ At AT, = 44 is & right invariant volume on
G. For o € C®(G) let

A n—1
1 _ “ .
hi (o) = (§> ()L D2 Ty (apy A A A A

ANBy A N A ATy)-
Then we have .
) -
Ty = 3 %z: hripe Ay,
and the right I' invariance of Ty implies that the distributions hg; are also
right T" invariant, i.e., for every v € T and every a € C®(G) one has

rihei(a) = bk (ria) = hr(a).

Moreover it is clear that (hxi)x,; is a Hermitian matrix of distributions and
that

thl(ak %) 20
k.l

for every o = (01, -+ ,an) € (CX(G))*. Moreover, by (x) we have

>k hw(o - @) > 0 if @) NT # & for one j € {1,--- ,n}. In par-
ticular it follows that for every real positive function a € C(G) the matrix

(hri(@))k, is positive semi-definite and positive definite if supp(a) > e.

Now we construct a sequence wy, of right I' invariant (1,1) forms as fol-
lows. Take an exhaustion {K,,}men of G with relatively compact subsets
K, centered at e, i.e. Km CC Kmy1, Uppeny = G and e € K. Further let
Xm denote a subordinate sequence of cut-off functions, i.e., xm|x,, = 1 and
SUPP Xm CC Km41-

We take the convolutions

Wm = Xm * Ty = /me(g)IZTHu(g)‘

The form w, is smooth. In order to describe its coefficients with respect to
the base ux A TI; we need some definitions.

Let [, denote the left multiplication z — g -z on G and 7 the mapping
z—

For a distribution A and a compactly supported smooth function ¢ on G

let

¢ * h(g) = h(l;(¢o1)).
Since ¢ is compactly supported and smooth, the function ¢ * A is likewise
smooth. Note that ¢ % h is right " invariant, whenever A is right I' invariant.
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There is a nonsingular matrix of smooth functions (a%)1<; x<» on G such
that

n
B A A Ao A i) =Y ahtin Ao Al A g
=1

An explicit computation of the equation Xm * Tr(n) = [5wm An shows that
i n
— m 7
Wm =5 k;1 hiibe A By

where
n

7= (—1F S (<1) (xmala]) * hj.
2,7=1
For v = (v, -+ ,v,) € C" let
n
g = (=1L (a0 .
v=1
Then we get
n n
> hR(@uei =Y haj(0ugT)-
k=1 2,7=1
Just as (@) the matrix ((—1)¥*a’) is nonsingular everywhere on G.
Hence for every g € K,,, there is an ¢, such that
n
Ciosg(h) = 3 (—1)Hox {200 (gh™")
v=1
does not vanish in an open neighborhood of h = e. This shows that (h7}(g))
is positive semidefinite and in particular positive definite for g € K,,.

The forms wy, are right I'-invariant and may be considered as a sequence
of (1,1)-forms on G/T and U,, = K, - T may be considered as an exhaustion
of G/T. The forms w,, are closed, since they are C* and are closed in the
sense of currents. For this note that (u(g) being the right invariant volume
defined above) for o € A?~1:"~1(G) we have

/ wWm Ao = (Xm *TH)(Q),
G
where

Xm *T = /G Xm (@) (12 T)1s(9).

Thus the formula
d(xm *T) = Xm *dT

implies the closedness of w,, and the first part of the theorem is proved.
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For the second part the separability by meromorphic functions implies the
existence of a meromorphic map
Graph(f) C X x Py
w1 N2
X ®y)"
(n = dimg X), which is biholomorphic in the complement of a proper analytic
subset of X.
Thus a Kahler form w on (P;)"™ defines a closed, positive (1,1)-current T
on X in the following way: For p € A?~1"~1(X) let

T(v) ==/ Tie Amhw,
Graph(f)*

where Graph(f)* denotes the set of smooth points of Graph(f). The current
T is strictly positive on G in the sense that for every n € A?~1(X) we have

.\ n—1
(%) (~1)("=D =227y A7) > 0.

This is clear since w is a Kahler form (P;)" and f is biholomorphic in the
complement of a proper analytic set. Let 0 # ¢ € C®(G) be a positive,
compactly supported function and write

n
T= Z hiipere N5,
k=1

[T

Following the first part of the proof define the convolutions ¢ * hy; = Rici
and the associated closed (1,1)-form & = & = ¢ * T. The form w is right T
invariant and strictly positive by using the same arguments as above. Thus
w is a Kahler form on X and the theorem is proved.

Remark 4. We do not know yet whether the assumption (concerning
hypersurfaces) in Theorem 2 implies that X is Kéhler. For instance one could
consider f - xn instead of x, in the proof of Theorem 2, where f denotes
a strictly positive function integrable with respect to the measure u. The
question is whether f can be chosen in such a way that lim,, .. wm exists.
We also do not know whether the assumption of discrete isotropy in Theorem
2 can be dropped.

6. On the conjecture of Ahiezer

In this section we prove the conjecture of Ahiezer (see §1) for the case
where X = G/H is a solvmanifold.
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Theorem 1. Let G be a connected solvable complex Lie group and H C G
an arbitrary subgroup. Suppose O(G)H = C. Then ¥(G)H = }(G)F'H.

Proof. We may assume that G is simply connected. Let H be the smallest
closed complex subgroup of G containing H. By a result of [19] it follows that
X(G)H = ¥(G)H and O(G)F = C. Thus we have X(G)H = o*¥(G/H),
where a: G — G/H denotes the quotient map defined by H. Let 7: G/H —
G/I denote the hypersurface reduction of G/H. Then we have O(G/I) = C
and ¥(G/H) = m*X(G/I) (see §1). Since O(G/I) = C, it follows that [° <G
and the simply connected solvable complex Lie group G /19 acts almost freely
on G/I. Thus Theorem 5.1 implies G’ C I° and hence the theorem.

Corollary 2. Let X = G/H be a solvmanifold. Suppose O(X) = C.
Then the base Y = G/J of the hypersurface reduction of X is a Cousin group.

Remark. A Cousin group, which is separable by hypersurfaces, is already
meromorphically separable (see [18, Anhang]). Therefore the meromorphic
and the hypersurface reduction of X (as in Corollary 2) coincide.
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